ESSENTIALS of Investments BODIE I KANE I MARCUS

CHAPTER 5

Risk and Return: Past and Prologue

5.1 RATES OF RETURN

Holding Period Return

 $HPR = \frac{P_1 - P_0 + D_1}{P_0}$ $P_0 = Beginning Price$ $P_1 = Ending Price$ $D_1 = Cash Dividend$

Rates of Return: Single Period Example

Ending Price =24Beginning Price =20Dividend =1

HPR = (24 - 20 + 1)/(20) = 25%

Measuring Investment Returns Over Multiple Periods

May need to measure how a fund performed over a preceding five-year period

Return measurement is more ambiguous in this case

Rates of Return: Multiple Period Example Text (Page 128)

Data from Table 5.1

	1	2	3	4
Assets(Beg.)	1.0	1.2	2.0	.8
HPR	.10	.25	(.20)	.25
TA (Before				
Net Flows	1.1	1.5	1.6	1.0
Net Flows	0.1	0.5	(0.8)	0.0
End Assets	1.2	2.0	.8	1.0

Returns Using Arithmetic and Geometric Averaging

Arithmetic

 $r_{a} = (r_{1} + r_{2} + r_{3} + \dots r_{n}) / n$ $r_{a} = (.10 + .25 - .20 + .25) / 4$ = .10 or 10%

Geometric

 $r_{g} = \{ [(1+r_{1}) (1+r_{2}) \dots (1+r_{n})] \}^{1/n} - 1$ $r_{g} = \{ [(1.1) (1.25) (.8) (1.25)] \}^{1/4} - 1$ $= (1.5150)^{1/4} - 1 = .0829 = 8.29\%$

Dollar Weighted Returns

Internal Rate of Return (IRR) - the discount rate that results in present value of the future cash flows being equal to the investment amount

- Considers changes in investment
- Initial Investment is an outflow
- Ending value is considered as an inflow
- Additional investment is a negative flow
- Reduced investment is a positive flow

Dollar Weighted Average
Using Text Example (Page 128)Net CFs1234\$ (mil)-0.1-0.50.81.0

 $1.0 = \frac{-0.1}{1 + IRR} + \frac{-0.5}{(1 + IRR)^2} + \frac{0.8}{(1 + IRR)^3} + \frac{1.0}{(1 + IRR)^4} = 4.17\%$

Quoting Conventions

APR = annual percentage rate (periods in year) X (rate for period) EAR = effective annual rate (1+ rate for period) Periods per yr - 1 Example: monthly return of 1% APR = 1% X 12 = 12% $EAR = (1.01)^{12} - 1 = 12.68\%$

5.2 RISK AND RISK PREMIUMS

Scenario Analysis and Probability Distributions

Mean: most likely value
 Variance or standard deviation
 Skewness

* If a distribution is approximately normal, the distribution is described by characteristics 1 and 2

Normal Distribution

Skewed Distribution: Large Negative Returns Possible

Negative

Positive

Median

Skewed Distribution: Large Positive Returns Possible

Measuring Mean: Scenario or Subjective Returns

Subjective returns

p(s) = probability of a state
r(s) = return if a state occurs
1 to s states

Numerical Example: Subjective or Scenario Distributions

State Prob	o. of State	r _{in} State
1	.1	05
2	.2	.05
3	.4	.15
4	.2	.25
5	.1	.35

E(r) = (.1)(-.05) + (.2)(.05)...+ (.1)(.35)E(r) = .15 or 15%

Measuring Variance or Dispersion of Returns

Subjective or Scenario

 $Var(r) = \sum_{s}^{s} p(s) [r(s) - E(r)]$ t=1 $SD(r) \equiv \sigma = \sqrt{Var(r)}$

Measuring Variance or Dispersion of Returns

Using Our Example:

Var =[(.1)(-.05-.15)2+(.2)(.05- .15)2...+ .1(.35-.15)2] Var= .01199 S.D.= [.01199] 1/2 = .1095 or 10.95%

Risk Premiums and Risk Aversion

Degree to which investors are willing to commit funds

Risk aversion

If T-Bill denotes the risk-free rate, r_f, and variance, σ_p², denotes volatility of returns then: The risk premium of a portfolio is:

 $E(r_P)-r_f$

Risk Premiums and Risk Aversion

To quantify the degree of risk aversion with parameter A:

 $E(r_P) - r_f = \frac{1}{2} A \sigma_P^2$

Or:

$$A = \frac{E(r_p) - r_f}{\frac{1}{2}\sigma_p^2}$$

The Sharpe (Reward-to-Volatility) Measure

$S = \frac{\text{portfolio risk premium}}{\text{standard deviation of portfolio excess return}}$

$$=\frac{E(r_P)-r_f}{\sigma_P}$$

5.3 THE HISTORICAL RECORD

Annual Holding Period Returns From Table 5.3 of Text

	Geom.	Arith.	Stan.
<u>Series</u>	Mean%	Mean%	Dev.%
World Stk	9.80	11.32	18.05
US Lg Stk	10.23	12.19	20.14
US Sm Stk	12.43	18.14	36.93
Wor Bonds	5.80	6.17	9.05
LT Treas.	5.35	5.64	8.06
T-Bills	3.72	3.77	3.11
Inflation	3.04	3.13	4.27

Annual Holding Period Excess Returns From Table 5.3 of Text

	Risk	Stan.	Sharpe	
<u>Series</u>	Prem.	Dev.%	Measure	
World Stk	7.56	18.37	0.41	
US Lg Stk	8.42	20.42	0.41	
US Sm Stk	14.37	37.53	0.38	
Wor Bonds	2.40	8.92	0.27	
LT Treas	1.88	7.87	0.24	

Figure 5.1 Frequency Distributions of Holding

Figure 5.2 Rates of Return on Stocks, Bonds and T-Bills

FIGURE 5.2

Rates of return on stocks, bonds and T-bills, 1926–2006

Source: Prepared from Table 5.3.

Figure 5.3 Normal Distribution with Mean of 12% and St Dev of 20%

Table 5.4Size-Decile Portfolios

TABLE 5.4	Decile	Geometric Average	Arithmetic Average	Standard Deviation
Size-decile portfolios of the NYSE/AMEX/NAS-	1 Largest	9.6%	11.4%	19.1%
DAQ Summary Statistics	2	10.9	13.2	21.6
of Annual Returns,	3	11.4	13.8	22.9
1927–2006	4	11.9	14.8	25.2
	5	12.0	15.2	26.6
	6	12.1	15.6	27.6
	7	12.4	16.3	30.0
	8	12.5	17.0	32.5
	9	12.2	17.5	35.3
	10 Smallest	13.8	20.4	40.9
	Total Value Weighted Index	10.1%	12.1%	20.2%

Source: Web site of Professor Kenneth R. French, http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.

5.4 INFLATION AND REAL RATES OF RETURN

Real vs. Nominal Rates

Fisher effect: Approximation nominal rate = real rate + inflation premium R = r + i or r = R - i Example r = 3%, i = 6% R = 9% = 3% + 6% or 3% = 9% - 6%

Real vs. Nominal Rates

Fisher effect:

$$1 + r = \frac{1 + R}{1 + i} \text{ or:}$$
$$r = \frac{R - i}{1 + i}$$

2.83% = (9% - 6%) / (1.06)

Figure 5.4 Interest, Inflation and Real Rates of Return

5.5 ASSET ALLOCATION ACROSS RISKY AND RISK-FREE PORTFOLIOS

Allocating Capital

 Possible to split investment funds between safe and risky assets
 Risk free asset: proxy; T-bills
 Risky asset: stock (or a portfolio)

Allocating Capital

Issues

- Examine risk/ return tradeoff
- Demonstrate how different degrees of risk aversion will affect allocations between risky and risk free assets

The Risky Asset: Text Example (Page 143)

Total portfolio value= \$300,000Risk-free value= 90,000Risky (Vanguard and Fidelity)= 210,000Vanguard (V)= 54%Fidelity (F)= 46%

The Risky Asset: Text Example (Page 143)

 $y = \frac{210,000}{300,000} = 0.7 \text{(risky assets, portfolio } P\text{)}$ $1 - y = \frac{90,000}{300,000} = 0.3 \text{(risk-free assets)}$

Vanguard	113,400/300,000 = 0.378
Fidelity	96,600/300,000 = 0.322
Portfolio P	210,000/300,000 = 0.700
Risk-Free Assets F	90,000/300,000 = 0.300
Portfolio C	300,000/300,000 = 1.000

Calculating the Expected Return Text Example (Page 145)

 $r_{f} = 7\%$

 $\sigma_{rf} = 0\%$

 $E(r_p) = 15\%$

σ_p = 22%

y = % in **p**

 $(1-y) = \% \text{ in } r_f$

Expected Returns for Combinations

$E(r_{c}) = yE(r_{p}) + (1 - y)r_{f}$

r_c = complete or combined portfolio

For example, y = .75E(r_c) = .75(.15) + .25(.07) = .13 or 13%

Figure 5.5 Investment Opportunity Set with a Risk-Free Investment

Variance on the Possible Combined Portfolios

Since $\sigma_{r_{f}} = 0$, then

 $\sigma_{\rm c} = y\sigma_{\rm p}$

Combinations Without Leverage

If y = .75, then $\sigma_{c} = .75(.22) = .165 \text{ or } 16.5\%$ If y = 1 $\sigma_{c} = 1(.22) = .22 \text{ or } 22\%$ If y = 0 $\sigma_{\rm c} = 0(.22) = .00 \text{ or } 0\%$

Using Leverage with Capital Allocation Line

Borrow at the Risk-Free Rate and invest in stock

Using 50% Leverage $r_c = (-.5) (.07) + (1.5) (.15) = .19$

 $\sigma_{\rm c} = (1.5) (.22) = .33$

Risk Aversion and Allocation

Greater levels of risk aversion lead to larger proportions of the risk free rate Lower levels of risk aversion lead to larger proportions of the portfolio of risky assets Willingness to accept high levels of risk for high levels of returns would result in leveraged combinations

5.6 PASSIVE STRATEGIES AND THE CAPITAL MARKET LINE

Table 5.5 Average Rates of Return, Standard Deviation and Reward to Variability

	Excess Return (%)		
	Average	SD	Sharpe Ratio
1926-1946	8.36	27.98	0.30
1947-1966	12.72	18.05	0.70
1967-1986	4.14	17.44	0.24
1987-2006	8.47	16.22	0.52
one-month bills over 1926–2006 and various subperiods	8.42	20.42	0.41
	1947–1966 1967–1986 1987–2006	Average1926–19468.361947–196612.721967–19864.141987–20068.47	AverageSD1926–19468.3627.981947–196612.7218.051967–19864.1417.441987–20068.4716.22

Source: Data in Table 5.3.

Costs and Benefits of Passive Investing

Active strategy entails costs

- Free-rider benefit
- Involves investment in two passive portfolios
 - Short-term T-bills

 Fund of common stocks that mimics a broad market index