CHAPTER 5

Risk and Return: Past and Prologue

5.1 RATES OF RETURN

Holding Period Return

$$
\begin{aligned}
& H P R=\frac{P_{1}-P_{0}+D_{1}}{P_{0}} \\
& \mathrm{P}_{0}=\text { Beginning Price } \\
& \mathrm{P}_{1}=\text { Ending Price } \\
& \mathrm{D}_{1}=\text { Cash Dividend }
\end{aligned}
$$

Rates of Return: Single Period Example

Ending Price = 24
Beginning Price = 20
Dividend =

HPR $=(24-20+1) /(20)=25 \%$

Measuring Investment Returns Over Multiple Periods

- May need to measure how a fund performed over a preceding five-year period
- Return measurement is more ambiguous in this case

Rates of Return: Multiple Period

 Example Text (Page 128)
Data from Table 5.1

Returns Using Arithmetic and Geometric Averaging

Arithmetic

$$
\begin{aligned}
r_{\mathrm{a}} & =\left(r_{1}+r_{2}+r_{3}+\ldots r_{n}\right) / n \\
r_{\mathrm{a}} & =(.10+.25-.20+.25) / 4 \\
& =.10 \text { or } 10 \%
\end{aligned}
$$

Geometric

$$
\begin{aligned}
r_{g} & =\left\{\left[\left(1+r_{1}\right)\left(1+r_{2}\right) \ldots\left(1+r_{n}\right)\right]\right\}^{1 / n}-1 \\
r_{g} & =\{[(1.1)(1.25)(.8)(1.25)]\}^{1 / 4}-1 \\
& =(1.5150)^{1 / 4}-1=.0829=8.29 \%
\end{aligned}
$$

Dollar Weighted Returns

Internal Rate of Return (IRR) - the discount rate that results in present value of the future cash flows being equal to the investment amount

- Considers changes in investment
- Initial Investment is an outflow
- Ending value is considered as an inflow
- Additional investment is a negative flow
- Reduced investment is a positive flow

Dollar Weighted Average Using Text Example (Page 128)

$$
\left.\begin{array}{lrrrr}
\text { Net CFs } & 1 & 2 & 3 & 4 \\
\$(\mathrm{mil}) & -0.1 & -0.5 & 0.8 & 1.0
\end{array}\right] \begin{aligned}
& 1.0=\frac{-0.1}{1+I R R}+\frac{-0.5}{(1+I R R)^{2}}+\frac{0.8}{(1+I R R)^{3}}+\frac{1.0}{(1+I R R)^{4}}=4.17 \%
\end{aligned}
$$

Quoting Conventions

APR = annual percentage rate
(periods in year) X (rate for period)
$E A R=$ effective annual rate
($1+$ rate for period) Periods per yr - 1
Example: monthly return of 1%

$$
\begin{aligned}
& \mathrm{APR}=1 \% \times 12=12 \% \\
& \mathrm{EAR}=(1.01)^{12}-1=12.68 \%
\end{aligned}
$$

5.2 RISK AND RISK PREMIUMS

Scenario Analysis and Probability Distributions

1) Mean: most likely value
2) Variance or standard deviation
3) Skewness

* If a distribution is approximately normal, the distribution is described by characteristics 1 and 2

Normal Distribution

Symmetric distribution

Skewed Distribution: Large Negative Returns Possible

Skewed Distribution: Large Positive Returns Possible

Measuring Mean: Scenario or Subjective Returns

Subjective returns

$E(r)=\sum_{t=1}^{S} p(s) r(s)$
$p(s)=$ probability of a state $r(s)=$ return if a state occurs
1 to s states

Numerical Example: Subjective or Scenario Distributions

State Prob. of State $r_{i n}$ State

1	.1	-.05
2	.2	.05
3	.4	.15
4	.2	.25
5	.1	.35

$E(r)=(.1)(-.05)+(.2)(.05) \ldots+(.1)(.35)$
$E(r)=.15$ or 15%

Measuring Variance or Dispersion of Returns

Subjective or Scenario

$$
\begin{gathered}
\operatorname{Var}(r)=\sum_{t=1}^{s} p(s)[r(s)-E(r)]^{2} \\
S D(r) \equiv \sigma=\sqrt{\operatorname{Var}(r)}
\end{gathered}
$$

Measuring Variance or Dispersion of Returns

Using Our Example:

Var $=[(.1)(-.05-.15) 2+(.2)(.05-.15) 2 . .+.1(.35-.15) 2]$
Var= 01199
S.D. $=$ [.01199$] 1 / 2=.1095$ or 10.95\%

Risk Premiums and Risk Aversion

- Degree to which investors are willing to commit funds
- Risk aversion
- If T-Bill denotes the risk-free rate, r_{f}, and variance, σ_{P}^{2}, denotes volatility of returns then:

The risk premium of a portfolio is:

$$
E\left(r_{P}\right)-r_{f}
$$

Risk Premiums and Risk Aversion

- To quantify the degree of risk aversion with parameter A:

$$
E\left(r_{P}\right)-r_{f}=\frac{1}{2} A \sigma_{P}^{2}
$$

- Or:

$$
A=\frac{E\left(r_{P}\right)-r_{f}}{\frac{1}{2} \sigma_{P}^{2}}
$$

The Sharpe (Reward-to-Volatility) Measure

$$
S=\frac{\text { portfolio risk premium }}{\text { standard deviation of portfolio excess return }}
$$

$$
=\frac{E\left(r_{P}\right)-r_{f}}{\sigma_{P}}
$$

5.3 THE HISTORICAL RECORD

Annual Holding Period Returns From Table 5.3 of Text

	Geom. Mean\%	Arith. Mean\%	Stan. Dev.\%
Series	Merld Stk	9.80	11.32

Annual Holding Period Excess Returns From Table 5.3 of Text

Risk Stan. Sharpe
Series
World Stk
US Lg Stk
US Sm Stk
Wor Bonds
LT Treas
Prem. Dev.\% Measure
$\begin{array}{lll}7.56 & 18.37 & 0.41\end{array}$
$\begin{array}{lll}8.42 & 20.42 & 0.41\end{array}$
$\begin{array}{lll}14.37 & 37.53 & 0.38\end{array}$
$2.40 \quad 8.92 \quad 0.27$
$\begin{array}{lll}1.88 & 7.87 & 0.24\end{array}$

Figure 5.1 Frequency Distributions of Holding

FIGURE 5.1
Frequency distribution of annual HPRs, 1926-2006 Source: Prepared from data in Table 5.3.

Large stocks

Geometric Mean $=10.23$ \% Arithmetic Mean $=12.19$ Standard Deviation $=20.14$

Long-term T-bonds

Geometric Mean $=5.35 \%$ Arithmetic Mean $=5.64$ Standard Deviation $=8.06$

T-bills

Geometric Mean $=3.72 \%$
Arithmetic Mean $=3.77$ Standard Deviation $=3.11$

Figure 5.2 Rates of Return on Stocks, Bonds and T-Bills

FIGURE 5.2

Rates of return on
stocks, bonds and T-bills,
1926-2006
Source: Prepared from
Table 5.3.

Figure 5.3 Normal Distribution with Mean of 12\% and St Dev of 20\%

FIGURE 5.3

The normal distribution with mean return 12% and standard deviation 20\%

Table 5.4 Size-Decile Portfolios

TABLE 5.4	Decile	Geometric Average	Arithmetic Average	Standard Deviation
Size-decile portfolios of	1 Largest	9.6%	11.4%	19.1%
the NYSE/AMEX/NAS-	2	10.9	13.2	21.6
DAQ Summary Statistics	2	11.4	13.8	22.9
of Annual Returns,	3	11.9	14.8	25.2
1927-2006	4	12.0	15.2	26.6
	5	12.1	15.6	27.6
	6	12.4	16.3	30.0
	7	12.5	17.0	32.5
	8	12.2	17.5	35.3
	9	13.8	20.4	40.9
	10 Smallest			
		10.1%	12.1%	20.2%
	Total Value Weighted Index			

5.4 INFLATION AND REAL RATES OF RETURN

Real vs. Nominal Rates

Fisher effect: Approximation nominal rate $=$ real rate + inflation premium

$$
R=r+i \text { or } r=R-i
$$

Example $r=3 \%, i=6 \%$

$$
R=9 \%=3 \%+6 \% \text { or } 3 \%=9 \%-6 \%
$$

Real vs. Nominal Rates

Fisher effect:

$$
\begin{gathered}
1+r=\frac{1+R}{1+i} \text { or: } \\
r=\frac{R-i}{1+i} \\
2.83 \%=(9 \%-6 \%) /(1.06)
\end{gathered}
$$

Figure 5.4 Interest, Inflation and Real Rates of Return

FIGURE 5.4

Interest, inflation, and real rates, 1956-2006
Source: Prepared from data in Table 5.3.

5.5 ASSET ALLOCATION ACROSS RISKY AND RISK-FREE PORTFOLIOS

Allocating Capital

- Possible to split investment funds between safe and risky assets
- Risk free asset: proxy; T-bills
- Risky asset: stock (or a portfolio)

Allocating Capital

- Issues
- Examine risk/ return tradeoff
- Demonstrate how different degrees of risk aversion will affect allocations between risky and risk free assets

The Risky Asset:

Text Example (Page 143)

Total portfolio value
Risk-free value
$=\$ 300,000$
$=90,000$
Risky (Vanguard and Fidelity) $=210,000$
Vanguard (V) = 54\%
Fidelity (F) = 46\%

The Risky Asset:

Text Example (Page 143)

$$
\begin{aligned}
& y=\frac{210,000}{300,000}=0.7(\text { risky assets, portfolio } P) \\
& 1-y=\frac{90,000}{300,000}=0.3(\text { risk-free assets) }
\end{aligned}
$$

Vanguard	$113,400 / 300,000=0.378$
Fidelity	$96,600 / 300,000=0.322$
Portfolio P	$210,000 / 300,000=0.700$
Risk-Free Assets F	$90,000 / 300,000=0.300$
Portfolio C	$300,000 / 300,000=1.000$

Calculating the Expected Return Text Example (Page 145)

$$
\begin{array}{ll}
r_{f}=7 \% & \sigma_{r f}=0 \% \\
E\left(r_{p}\right)=15 \% & \sigma_{p}=22 \% \\
y=\% \text { in } p & (1-y)=\% \text { in } r_{f}
\end{array}
$$

Expected Returns for Combinations

$$
E\left(r_{c}\right)=y E\left(r_{p}\right)+(1-y) r_{f}
$$

$\mathrm{r}_{\mathrm{c}}=$ complete or combined portfolio

$$
\begin{aligned}
& \text { For example, } y=.75 \\
& E\left(r_{\mathrm{c}}\right)= \\
& =.75(.15)+.25(.07) \\
& =.13 \text { or } 13 \%
\end{aligned}
$$

Figure 5.5 Investment Opportunity Set with a Risk-Free Investment

Variance on the Possible Combined Portfolios

Since $\sigma_{r_{t}}=0$, then
 $\sigma_{c}=\mathrm{y} \sigma_{\mathrm{p}}$

Combinations Without Leverage

$$
\begin{aligned}
& \text { If } y=.75, \text { then } \\
& \sigma_{c}=.75(.22)=.165 \text { or } 16.5 \% \\
& \text { If } y=1 \\
& \sigma_{c}=1(.22)=.22 \text { or } 22 \% \\
& \text { If } y=0 \\
& \sigma_{c}=0(.22)=.00 \text { or } 0 \%
\end{aligned}
$$

Using Leverage with Capital Allocation Line

Borrow at the Risk-Free Rate and invest in stock
Using 50\% Leverage

$$
r_{c}=(-.5)(.07)+(1.5)(.15)=.19
$$

$$
\sigma_{c}=(1.5)(.22)=.33
$$

Risk Aversion and Allocation

- Greater levels of risk aversion lead to larger proportions of the risk free rate
- Lower levels of risk aversion lead to larger proportions of the portfolio of risky assets
- Willingness to accept high levels of risk for high levels of returns would result in leveraged combinations

5.6 PASSIVE STRATEGIES AND THE CAPITAL MARKET LINE

Table 5.5 Average Rates of Return, Standard Deviation and Reward to Variability

TABLE 5.5	Excess Return (\%)			
		Average	SD	Sharpe Ratio
Average excess rate of		8.36	27.98	0.30
return, standard devia-	$1926-1946$	12.72	18.05	0.70
tions and the reward-to-	$1947-1966$	4.14	17.44	0.24
volatility ratio of large	$1967-1986$	8.47	16.22	0.52
common stocks over	$1987-2006$	8.42	20.42	0.41
one-month bills over				
1926-2006 and various	$1926-2006$			
subperiods				
Source: Data in Table 5.3.				

Costs and Benefits of Passive Investing

\square Active strategy entails costs
\square Free-rider benefit
\square Involves investment in two passive portfolios

- Short-term T-bills
- Fund of common stocks that mimics a broad market index

